Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22263, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097644

RESUMO

The human sulfatase HSulf-2 is one of only two known endosulfatases that play a decisive role in modulating the binding properties of heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Recently, HSulf-2 was shown to exhibit an unusual post-translational modification consisting of a sulfated glycosaminoglycan chain. This study describes the structural characterization of this glycosaminoglycan (GAG) and provides new data on its impact on the catalytic properties of HSulf-2. The unrevealed nature of this GAG chain is identified as a chondroitin/dermatan sulfate (CS/DS) mixed chain, as shown by mass spectrometry combined with NMR analysis. It consists primarily of 6-O and 4-O monosulfated disaccharide units, with a slight predominance of the 4-O-sulfation. Using atomic force microscopy, we show that this unique post-translational modification dramatically impacts the enzyme hydrodynamic volume. We identified human hyaluronidase-4 as a secreted hydrolase that can digest HSulf-2 GAG chain. We also showed that HSulf-2 is able to efficiently 6-O-desulfate antithrombin III binding pentasaccharide motif, and that this activity was enhanced upon removal of the GAG chain. Finally, we identified five N-glycosylation sites on the protein and showed that, although required, reduced N-glycosylation profiles were sufficient to sustain HSulf-2 integrity.


Assuntos
Glicosaminoglicanos , Sulfatases , Humanos , Microscopia de Força Atômica , Proteoglicanas de Heparan Sulfato , Sulfatos de Condroitina/metabolismo , Espectrometria de Massas
2.
Nat Commun ; 13(1): 5113, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042212

RESUMO

Glycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues. Size discrimination of tetra- to icosasaccharides from heparin, chondroitin sulfate and dermatan sulfate was investigated and we show that different contents and distributions of sulfate groups can be detected. Remarkably, differences in α/ß anomerization and 1,4/1,3 osidic linkages can also be detected in heparosan and hyaluronic acid, as well as the subtle difference between the glucuronic/iduronic epimers in chondroitin and dermatan sulfate. Although, at this stage, discrimination of each of the constituent units of GAGs is not yet achieved at the single-molecule level, the resolution reached in this study is an essential step toward this ultimate goal.


Assuntos
Glicosaminoglicanos , Nanoporos , Sulfatos de Condroitina/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Glicosaminoglicanos/química , Polissacarídeos/análise , Sulfatos
3.
Macromol Rapid Commun ; 43(21): e2200412, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803899

RESUMO

The use of sequence-defined polymers is an interesting emerging solution for materials identification and traceability. Indeed, a very large amount of identification sequences can be created using a limited alphabet of coded monomers. However, in all reported studies, sequence-defined taggants are usually included in a host material by noncovalent adsorption or entrapment, which may lead to leakage, aggregation, or degradation. To avoid these problems, sequence-defined polymers are covalently attached in the present work to the mesh of model materials, namely acrylamide hydrogels. To do so, sequence-coded polyurethanes containing a disulfide linker and a terminal methacrylamide moiety are synthesized by stepwise solid-phase synthesis. These methacrylamide macromonomers are afterward copolymerized with acrylamide and bisacrylamide in order to achieve cross-linked hydrogels containing covalently-bound polyurethane taggants. It is shown herein that these taggants can be selectively detached from the hydrogel mesh by reactive desorption electrospray ionization. Using dithiothreitol the disulfide linker that links the taggant to the gel can be selectively cleaved. Ultimately, the released taggants can be decoded by tandem mass spectrometry.


Assuntos
Acrilamidas , Polímeros , Dissulfetos/química , Hidrogéis/química , Poliuretanos , Acrilamida , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
J Am Soc Mass Spectrom ; 33(4): 627-634, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344372

RESUMO

Annonaceous acetogenins are natural products held responsible for atypical Parkinsonism due to chronic consumption in traditional medicine or as food, leading to the development of analytical strategies for their complete chemical characterization in complex mixtures. Characterization by tandem mass spectrometry (MS/MS) of acetogenins using collision-induced dissociation from lithium adducts provides additional structural information compared to protonated or sodiated species such as ketone location on the acetogenin backbone. However, very low intensity diagnostic ions together with the lack of extensive structural information regarding position of OH and THF substituents limit this approach. Copper adducts led to diagnostic fragment ions that allow us to identify the position of oxygen rings and hydroxyl substituents. Fragmentation rules were established on the basis of acetogenin standards allowing the identification of 45 over the 77 analogues observed in an extract of Annona muricata by LC-MS/MS using postcolumn infusion of copper sulfate (CuSO4) solution. Molecular networks that were generated thanks to specific fragmentations obtained with copper led to the distinction of THF ring position or to the identification of hydroxylated lactone, for instance.


Assuntos
Acetogeninas , Annona , Acetogeninas/análise , Acetogeninas/química , Annona/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Cobre , Lítio , Espectrometria de Massas em Tandem
5.
Anal Bioanal Chem ; 413(28): 7107-7117, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34651208

RESUMO

Chondroitin sulfate (CS) glycosaminoglycans are biologically active sulfated polysaccharides that pose an analytical challenge for their structural analysis and functional evaluation. In this study, we developed a hydrophilic interaction liquid chromatography separation method and its on-line coupling to mass spectrometry (MS) allowing efficient differentiation and sensitive detection of mono-, di-, and trisulfated CS disaccharides and their positional isomers, without requiring prior derivatization. The composition of the mobile phase in terms of pH and concentration showed great influence on the chromatographic separation and was varied to allow the distinction of each CS without signal overlap for a total analysis time of 25 min. This methodology was applied to determine the disaccharide composition of biological reaction media resulting from various enzymatic transformations of CS, such as enzymatic desulfation of CS disaccharides by a CS 4-O-endosulfatase, and depolymerization of the CS endocan by chondroitinase lyase ABC.


Assuntos
Sulfatos de Condroitina/química , Cromatografia Líquida/métodos , Dissacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfatos/química , Espectrometria de Massas em Tandem/métodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Temperatura
6.
Anal Chem ; 93(35): 12041-12048, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431672

RESUMO

Because of its speed, sensitivity, and ability to scrutinize individual species, mass spectrometry (MS) has become an essential tool in analytical strategies aimed at studying the degradation behavior of polyesters. MS analyses can be performed prior to the degradation event for structural characterization of initial substrates or after it has occurred to measure the decreasing size of products as a function of time. Here, we show that MS can also be usefully employed during the degradation process by online monitoring the chain solvolysis induced by reactive desorption electrospray ionization (DESI). Cleavage of ester bonds in random copolymers of lactic acid (LA) and glycolic acid (GA) was achieved by electrospraying methanol-containing NaOH onto the substrates. Experimental conditions were optimized to generate methanolysis products of high abundance so that mass spectra can be conveniently processed using Kendrick-based approaches. The same reactive-DESI performance was demonstrated for two sample preparations, solvent casting for soluble samples or pressed pellets for highly crystalline substrates, permitting to compare polymers with LA/GA ratios ranging from 100/0 to 5/95. Analysis of sample fractions collected by size exclusion chromatography showed that methanolysis occurs independently of the original chain size, so data recorded for poly(LA-co-GA) (PLAGA) copolymers with the average molecular weight ranging from 10 to 180 kDa could be safely compared. The average mass of methanolysis products was observed to decrease linearly (R2 = 0.9900) as the GA content increases in PLAGA substrates, consistent with the susceptibility of ester bonds toward solvolysis being higher in GA than in LA. Because DESI only explores the surface of solids, these data do not reflect bulk degradability of the copolymers but, instead, their relative degradability at the molecular level. Based on a "reactive-DESI degradability scale" such as that established here for PLAGA, the proposed method offers interesting perspectives to qualify intrinsic degradability of different polyesters and evaluate their erosion susceptibility or to determine the degradability of those polymers known to degrade via erosion only.


Assuntos
Glicóis , Espectrometria de Massas por Ionização por Electrospray , Peso Molecular , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
7.
Metabolites ; 11(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357338

RESUMO

Microorganisms associated with termites are an original resource for identifying new chemical scaffolds or active metabolites. A molecular network was generated from a collection of strain extracts analyzed by liquid chromatography coupled to tandem high-resolution mass spectrometry, a molecular network was generated, and activities against the human pathogens methicillin-resistant Staphylococcus aureus, Candida albicans and Trichophyton rubrum were mapped, leading to the selection of a single active extract of Penicillium sclerotiorum SNB-CN111. This fungal species is known to produce azaphilones, a colorful family of polyketides with a wide range of biological activities and economic interests in the food industry. By exploring the molecular network data, it was shown that the chemical diversity related to the P. sclerotiorum metabolome largely exceeded the data already reported in the literature. According to the described fragmentation pathways of protonated azaphilones, the annotation of 74 azaphilones was proposed, including 49 never isolated or synthesized thus far. Our hypothesis was validated by the isolation and characterization of eight azaphilones, among which three new azaphilones were chlorogeumasnol (63), peniazaphilone E (74) and 7-deacetylisochromophilone VI (80).

8.
Analyst ; 145(11): 4012-4020, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347851

RESUMO

Z and E azobenzene isomers are molecular switches which can interconvert both photochemically and thermally. Presently, we studied a ketal-substituted bridged azobenzene in which two stable diastereomeric conformers (Z1 and Z2) photochemically interconvert through the transient E isomer. UV-VIS absorption spectroscopy is commonly used to study the relaxation kinetics of azobenzenes, but it does not allow direct quantitation of the process in this case. In the present paper, liquid chromatography coupled to UV detection (LC-UV) and ion mobility-mass spectrometry (IMS-MS) were combined to study the thermal back relaxation kinetics of the E isomer. LC separation of the three isomers was achieved in less than 10 minutes, allowing the characterization of the relatively slow thermal back relaxation kinetics at low temperature through UV detection. In addition, the faster E→Z thermal back relaxation at higher temperature was studied using IMS-MS, which allows shorter timescale separation than LC. Baseline separation of the two Z isomers was achieved in IMS-MS for [Z + Ag]+ ions, and their gas-phase conformations were determined by IRMPD experiments. Both IMS-MS and LC-UV methodologies succeeded to study the E→Z thermal back relaxation kinetics, and appeared to be complementary techniques. We show that the combination of the two techniques allows the characterization of the isomerization processes over a broad temperature range, and the determination of the associated thermodynamic observables.

9.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8624, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31658387

RESUMO

This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high-performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post-ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas-phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS-MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.

10.
RSC Adv ; 10(52): 31670-31679, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520653

RESUMO

The methyl ester of 8-oxo-8H-indeno[2',1':7,8]naphtho[1,2-b]thiophene-2-carboxylic acid (1) and its corresponding PEGylated ester were synthesised and fully characterised. X-ray diffraction studies on (1) confirmed the helical structure of the receptor and that it is self-assembled into layers by π-π interactions. An in-depth study by DFT calculations and MS experiments (ESI-MS, MS/MS, IMRPD and ESI-IMS-MS) was carried out between (1) and the physiological cation K+. The formation of supramolecular complexes between (1) and K+ with different stoichiometries was demonstrated and the cation K+ preferentially interacts with the oxygen atoms of the carbonyl bond of the ketone and ester groups and the sulphur atom of the heterocycle. The ability of the two synthesized aromatic architectures to transport ions across a model lipid membrane has been studied by electrophysiology experiments. The formation of pores was observed, even at nanomolar concentrations. Since the PEGylated molecule showed more regular pore definitions than the hydrophobic molecule, the introduction of a polar hydrophilic chain made it possible to control the orientation of the aromatic architectures within the membrane.

11.
Angew Chem Int Ed Engl ; 59(8): 3264-3271, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31805201

RESUMO

We report a molecular design and concept using π-system elongation and steric effects from helicenes surrounding a triphenylene core toward stable chiral polycyclic aromatic hydrocarbons (PAHs) with a maximal π-distortion to tackle their aromaticity, supramolecular and molecular properties. The selective syntheses, and the structural, conformational and chiroptical properties of two diastereomeric large multi-helicenes of formula C90 H48 having a triphenylene core and embedding three [5]helicene units on their inner edges and three [7]helicene units at their periphery are reported based on diastereoselective and, when applicable, enantiospecific Yamamoto-type cyclotrimerizations of racemic or enantiopure 9,10-dibromo[7]helicene. Both molecules have an extremely distorted triphenylene core, and one of them exhibits the largest torsion angle recorded so far for a benzene ring (twist=36.9°).

12.
Angew Chem Int Ed Engl ; 57(33): 10574-10578, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29870140

RESUMO

Sequence-defined oligourethanes were tested as in vivo taggants for implant identification. The oligomers were prepared in an orthogonal solid-phase iterative approach and thus contained a coded monomer sequence that can be unequivocally identified by tandem mass spectrometry (MS/MS). The oligomers were then included in small amounts (1 wt %) in square-centimeter-sized crosslinked poly(vinyl alcohol) (PVA) model films, which were intramuscularly and subcutaneously implanted in the abdomen of rats. After one week, one month, or three months of implantation, the PVA films were explanted. The rat tissues exposed to the implants did not exhibit any adverse reactions, which suggested that the taggants are not harmful and probably not leaching out from the films. Furthermore, the explanted films were immersed in methanol, as a solvent for oligourethanes, and the liquid extract was analyzed by mass spectrometry. In all cases, the oligourethane taggant was detected, and its sequence was identified by MS/MS.


Assuntos
Poliuretanos/química , Álcool de Polivinil/química , Próteses e Implantes , Abdome/patologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Metanol/química , Camundongos , Poliuretanos/toxicidade , Álcool de Polivinil/análise , Ratos , Espectrometria de Massas por Ionização por Electrospray
13.
Angew Chem Int Ed Engl ; 57(21): 6266-6269, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29633445

RESUMO

Digital polymers are uniform macromolecules that store monomer-based binary sequences. Molecularly stored information is usually extracted from the polymer by a tandem mass spectrometry (MS/MS) measurement, in which the coded chains are fragmented to reveal each bit (i.e. basic coded monomer unit) of the sequence. Here, we show that data-extraction can be greatly simplified by favoring the formation of MS/MS fragments containing two bits instead of one. In order to do so, digital poly(alkoxyamine phosphodiester)s, containing binary dyads in each repeat unit, were prepared by an orthogonal solid-phase approach involving successive phosphoramidite and radical-radical coupling steps. Three different sets of monomers were considered to build these polymers. In all cases, four coded building blocks-two hydroxy-nitroxides and two phosphoramidite monomers-were required to build the dyads. Among the three studied monomer sets, one combination allowed synthesis of uniform sequence-coded polymers. The resulting polymers led to clear dyad-containing fragments in MS/MS and could therefore be efficiently decoded. Additionally, an algorithm was created to detect specific dyad fragments, thus enabling automated sequencing.

14.
Chemistry ; 24(34): 8656-8663, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29577466

RESUMO

The formation and characterization of K+ and Cs+ complexes originating from the cooperativity of three non-covalent interactions is explored. The tridimensional preorganization of the naphthothiophene platform displays a favorable well-defined bay region combining a π fragment and a carbonyl moiety flanking a central sulfur atom. A joint theoretical and experimental infrared multiple photon dissociation (IRMPD) study allowed deciphering the key contribution of the orthogonal phenyl fragment to the elaboration of alkali metal complexes. In combination with S and CO interactions, the π-cation interaction significantly enhances the binding energies of naphthothiophene derivatives.

15.
Macromol Rapid Commun ; 38(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29144013

RESUMO

A photoregulated phosphoramidite iterative process is studied for the synthesis of non-natural, digitally encoded oligo(phosphodiester)s. The oligomers are prepared using two reactive phosphoramidite monomers containing a 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) protected OH group. The stepwise synthesis is performed on an OH-functional soluble polystyrene support, which allows recycling by precipitation in a nonsolvent. Repeating cycles involving phosphoramidite coupling, oxidation of phosphite to phosphate, and NPPOC deprotection by light irradiation at λ = 365 nm are performed in order to prepare oligomers with different lengths and sequences. Synthesis is conducted on a micromolar scale and good recycling yields are obtained in all cases. The use of a soluble polymer support allows an in-depth characterization of the NPPOC photo-deprotection step by 1 H NMR, UV spectroscopy, and size exclusion chromatography, and thus identification of optimal synthesis conditions. After cleavage from the support, the oligo(phosphodiester)s are characterized by tandem mass spectrometry, which confirms preparation of uniform sequence-coded oligomers.


Assuntos
Organofosfatos/síntese química , Estrutura Molecular , Organofosfatos/química , Processos Fotoquímicos
16.
Rapid Commun Mass Spectrom ; 31(23): 2003-2010, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28901031

RESUMO

RATIONALE: Chondroitin sulfate (CS) glycosaminoglycans are bioactive sulfated polysaccharides comprising repeating units of uronic acid and N-acetyl galactose sulfated at various positions. The optimal length and sulfation pattern of the CS bioactive sequences remain elusive so that structure-activity relationships cannot be easily established. Development of efficient analytical methods allowing the differentiation of the various sulfation patterns of CS sequences is therefore of particular importance to correlate their biological functions to the sulfation pattern. METHODS: Discrimination of different oligomers (dp2 to dp6) of synthetic chondroitin sulfate isomers was evaluated by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in the negative-ion mode from deprotonated and alkali adduct species. In addition, ion mobility mass spectrometry (IMS-MS) was used to study the influence of both the degree of polymerization and sulfate group location on the gas-phase conformation of CS oligomers. RESULTS: ESI-MS/MS spectra of chondroitin sulfate isomers show characteristic product ions exclusively from alkali adduct species (Li, Na, K and Cs). Whatever the alkali adducts studied, MS/MS of chondroitin oligosaccharides sulfated at position 6 yields a specific product ion at m/z 139 while CS oligosaccharides sulfated at position 4 show a specific product ion at m/z 154. Being observed for the different CS oligomers di-, tetra- and hexasaccharides, these fragment ions are considered as diagnostic ions for chondroitin 6-O-sulfate and chondroitin 4-O-sulfate, respectively. IMS-MS experiments reveal that collision cross-sections (CCS) of CS oligomers with low charge states evolved linearly with degrees of polymerization indicating a similar gas-phase conformation. CONCLUSIONS: This study allows the fast and unambiguous differentiation of CS isomers sulfated at position 6 or 4 for both saturated and unsaturated analogues from MS/MS experiments. In addition, the CCS linear evolution of CS oligomers in function of the degree of polymerization indicates that no folding occurs even for hexasaccharides.

17.
Macromol Rapid Commun ; 38(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833851

RESUMO

Mixtures of uniform sequence-defined oligourethanes are evaluated as 2D molecular barcodes for labeling three different commodity polymers, namely polystyrene, polyvinylchloride and polyethylene terephthalate. Six different oligourethanes are synthesized by solid-phase iterative synthesis and are coded using a binary monomer alphabet. High-resolution mass spectrometry studies indicate that all oligomers are uniform and sequence-defined. However, instead of using them as individual coded chains, oligomers with different chain-length, mass and sequence are mixed into intentionally polydispersed libraries. In particular, a three-component library and a four-component library are created to encode a 2-bytes model binary sequence. These 2D-coded libraries are incorporated in all commodity plastics via a simple solvent casting procedure. Furthermore, in all cases, the oligomer mixtures can be extracted from the host polymer films and deciphered by mass spectrometry, thus opening interesting avenues for anti-counterfeiting and traceability applications.


Assuntos
Plásticos/química , Polietilenotereftalatos/química , Poliestirenos/química , Cloreto de Polivinila/química , Uretana/química , Espectrometria de Massas , Plásticos/síntese química , Uretana/síntese química
18.
Angew Chem Int Ed Engl ; 56(25): 7297-7301, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28504474

RESUMO

A three-step post-polymerization modification method was developed for the design of digitally encoded poly(phosphodiester)s with controllable side groups. Sequence-defined precursors were synthesized, either manually on polystyrene resins or automatically on controlled pore glass supports, using two phosphoramidite monomers containing either terminal alkynes or triisopropylsilyl (TIPS) protected alkyne side groups. Afterwards, these polymers were modified by stepwise copper-catalyzed azide-alkyne cycloaddition (CuAAC). The terminal alkynes were first reacted with a model azide compound, and after removal of the TIPS groups, the remaining alkynes were reacted with another organic azide. This simple method allows for quantitative side-chain modification, thus opening up interesting avenues for the preparation of a wide variety of digital polymers.

19.
Bioorg Med Chem Lett ; 27(11): 2506-2509, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400233

RESUMO

SHAPE chemistry (selective 2'-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature for RNA secondary structure determination. However, to the best of our knowledge, the structure of 2'-O-acylation products has never been confirmed by NMR or X-ray data. We have realized the acylation reactions between cNMP and NMIA under SHAPE chemistry conditions and identified the acylation products using standard NMR spectroscopy and LC-MS/MS experiments. For cAMP and cGMP, the major acylation product is the 2'-O-acylated compound (>99%). A trace amount of N-acylated cAMP has also been identified by LC-UV-MS2. While for cCMP, the isolated acylation products are composed of 96% of 2'-O-acylated, 4% of N,O-diacylated, and trace amount of N-acylated compounds. In addition, the characterization of the major 2'-O-acylated compound by NMR showed slight differences in the conformation of the acylated sugar between the three cyclic nucleotides. This interesting result should be useful to explain some unexpected reactivity of the SHAPE chemistry.


Assuntos
Nucleotídeos/química , Acilação , Espectroscopia de Ressonância Magnética , Nitrosaminas/química , Conformação de Ácido Nucleico , RNA/química , Espectrometria de Massas em Tandem
20.
Anal Chem ; 89(7): 4230-4237, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263061

RESUMO

The shape of the spectral features in arrival time distributions (ATDs) recorded by ion mobility spectrometry (IMS) can often be interpreted in terms of the coexistence of different isomeric species. Interconversion between such species is also acknowledged to influence the shape of the ATD, even if no general quantitative description of this effect is available. We present an analytical model that allows simulating ATDs resulting from interconverting species. This model is used to reproduce experimental data obtained on a bistable system and to interpret discrepancies between measurements on different types of instruments. We show that the proposed model can be further exploited to extract kinetic and thermodynamic data from tandem-IMS measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...